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Abstract— Due to the increased levels of environmental degradation arising from conventional plastics, rise of 

appropriate interventions, especially in the food packaging industry. Covering the basics of conventional plastics, their 

usage, and potential harm, one must turn their attention to bioplastics. Bioplastics made from renewable sources like 

starch, cellulose, polylactic acid (PLA), and proteins. This review provides detailed coverage of the bio-based polymers 

and bioplastics such as synthetic bioplastics, polybutylene adipate terephthalate (PBAT), PLA, polyhydroxyalkanoate 

(PHA), polyvinyl alcohol (PVOH), polycaprolactone (PCL), and starch-based bioplastics, cellulose-based bioplastics, and 

protein-based bioplastics. This allows one understand the various characteristics they possess and how effective they could 

be when used in food packaging. Effects on the environment, effectiveness on the economy, biodegradable ability of the 

product, and its effects on the environment at different stages of life, regulatory boundaries, and safety measures are 

assessed. However; the bioplastics are present some difficulties in attaining the required mechanical and barrier properties, 

degradation of the biodegradable polymers, and limitations in processing. Moreover, correlates that affect the acceptance of 

the products by consumers and the position of the role of regulatory frameworks in the use of bioplastics are presented. 

According to the review made, it is found out that bioplastics if promoted in the right way have a high potential to be used 

as sustainable food packaging material; however, more research needs to be done, the policies should be more supportive 

and the consumers need to be sensitized in order to bring more improvement in the use of bioplastics. 

Keywords— biodegradable; bioplastic; biopolymer; food packaging; mechanical properties; Polymer; sustainability 

 

 

1 INTRODUCTION    

Plastic waste is becoming a major environmental threat globally [1]. Carbon emissions from plastics 

disposed in landfills are estimated at 253 g CO2 per kg of plastics [2], [3], while emissions from plastic 
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waste when burned range between 673 g to 4605 g CO2 per kg [4]. Another reason is that those cremations 

use greenhouses gases and therefore, lead to global warming. It is indicated that even after a century, the 

amount of degradation of polythene is as low as half a percent. The long periods of degradation and 

detrimental impacts on terrestrial and marine ecosystems of conventional plastic materials, which are 

mostly generated from non-renewable fossil fuels, make them a chronic source of pollution in the 

environment [5]. The plastics-heavy food packaging sector is under growing pressure to switch to more 

environmentally friendly and sustainable options [4], [6], [7]. 

 

Bioplastics are plastic products that are made from renewable biomass feedstocks like starch, cellulose or 

polylactic acid and are therefore, being studied as a potential to reduce the problems associated with 

conventional plastics [8]. These materials hold several benefits, including low levels of carbon emission 

when used compared to conventional materials [9], degradability, and capability to reduce reliance on fossil 

resources. Therefore, increased awareness regarding bioplastics is likely to make it a suitable solution for 

applications in food packaging [10]. 

 

However, in light of recent developments in the issue of bioplastic materials with regards to food 

packaging, this review seeks to offer an extensive update on the topic. The different categories of 

bioplastics that we will examine include synthetic bioplastics (PBS, PLA, PHA, PVOH, PCL), starch base 

bioplastics, cellulose base bioplastics, and protein base bioplastics, which will cover the methods of making 

bioplastics [8], [11], the properties and the capability of using these kinds of plastics as food packaging 

materials. Furthermore, the review will consider the courses and behaviors of the mentioned materials such 

as the barrier properties, mechanical strengths, and how they tend to behave with food items [12]. 

 

Other factors such as environmental and economic impacts will be investigated to determine the 

sustainability of food packaging that employs bioplastics. Bio-degradability and comparative assessments 

with conventional plastics, as well as life cycle assessments of the product, will be evaluated [13]. 

Moreover, the review will focus on some aspects such as the regulation and safety, and concern the 

frameworks that control the bioplastics in direct relationship with food contact applications. 

 

Although bioplastics have vast potentiality and actuality, there exist some issues that need to be solved 

including technical problems related to bioplastic production (limited resources, high cost, material 

properties, etc.) [14] the performance of bioplastics under various conditions, and accepting the idea of 

bioplastic usage among the consumers [15]. This review shall describe these challenges and in the 

subsequent sections discuss future developments to improve the life cycle of bioplastic food packaging and 

make the options more popular. 

 

Bioplastics are divided into three groups such as Bio-based, Biodegradable, and both of Bio-based and 

Biodegradable as shown in Fig. 01. Bio-based plastic does not necessarily show biodegradability and 

biodegradable plastic does not show necessarily show bio-based origin. Therefore bio-based and 

biodegradable bioplastics are not the same. Because some bioplastics are bio-based but not biodegradable 

(bio-PE: monomers are produced from corn but it not biodegraded) [16].  
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Fig. 01: The classification of Bioplastics, bio-based plastics, biodegradable plastics and, both bio-based and biodegradable 

plastic. 

 

In order to achieve this goal, this review discusses the development of both bio-based and biodegradable 

bioplastic materials (Starch, Protein, PLA, Cellulose) used in food packaging, their applications in food 

industries in current society, as well as the future developments of this research field. Thus, we envision 

ourselves being able to contribute to the ongoing continuation of the discussion related to more sustainable 

forms of packaging for the food industry in particular and to the improvement of the current situation in 

this sphere in general. 

2.TYPES OF BOTH BIO-BASED AND BIODEGRADABLE BIOPLASTIC MATERIALS 

These are divided by their source and most importantly their biodegradation characteristic. Bio based 

bioplastics are obtained from renewable sources of biological origin similarly biodegradable bioplastics 

dissolve naturally in the environmental surroundings. What’s more, some bioplastics are categorized both 

as bio-based and biodegradable bioplastics. However, bioplastics that satisfy all these conditions are of 

different types as further discussed below with regards to their production process, properties and uses, 

strengths, and weaknesses. 

2.1 Cellulous 

Cellulose is a polydisperse linear homopolymer composed of D-glucopyranose units linked with a β-1,4-

glycosidic bond, including free hydroxyl groups (-OH) at the C-2, C-3, and C-6 atoms. Based on the -OH 

groups and the oxygen atoms of both the pyranose ring and the glycosidic bond, ordered hydrogen bond 

networks can be formed (Fig. 02) [12]. 

Cellulose, a natural polymer found in all plants, is one of the most abundant materials on the Earth and has 

a great potential to be used in developing new materials. Available in large quantities, cellulose is 

renewable and biodegradable as well as cheap[17]. And also, harmless, green, non-toxic, non-

neocarcinogenic, nonbioaccumulative, and thermally[18]. Thus, it becomes chemically stable and 

derivable. This is very rich in fruit and vegetable waste and indeed it contains a higher yield of Carbon 

Dioxide than compost prepared from other materials[19]. The valuable biopolymer among the two primary 
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categories of cellulose derivatives, it is the cellulose ester and cellulose ether that has the most demand in 

industrial application in the production of pure cellulose bioplastics which is still rather challenging as far 

as melting and overall structural complexity of metals are concerned. It can be dissolved in accordance with 

standard practices. Mechanical properties, thermal stability, that is, biopolymers’ flexible characteristics 

such as tensile strength, elongation at break, and water absorption are some of the properties that could be 

enhanced with the addition of cellulose[12]. 

 
Fig. 02: Chemical structure of cellulose [20] 

 

2.1.1 Characteristics and performance in packaging 

 

Cellulose and its derivatives have been tested for packaging applications[21]. Cellulose composites showed 

excellent mechanical properties, reinforcing capabilities, biodegradability, and availability[22]. For 

instance, Carrillo et al. prepared the cellulose lyocell fiber/cellulose acetate butyrate composite[23]. They 

displayed increased tensile properties, dimensional stability, fiber and matrix compatibility, and 

biodegradability[6], [23]. Carboxymethyl cellulose (CMC) based films fabricated by incorporating 

bioactive Chinese chives root extract (CRE) showed higher oil resistance properties in addition to the 

improved physical and barrier properties, antioxidant and antimicrobial activity (against B. cereus, S. 

aureus, E. coli, and S. Typhimurium), which is desirable for packaging of oil products[21]. 

Peptidopolysaccharide developed using 2,3-dialdehyde cellulose and antimicrobial nisin peptide showed 

improved mechanical properties, lower water-holding capacity, and excellent antimicrobial activity against 

S. aureus and E. coli. This active film also showed an extended shelf life of fresh pork meat stored at 4°C 

for 6 days. In another study, antimicrobial packaging film was prepared using cellulose acetate 

butyrate/organically modified montmorillonite (OMMT) incorporated with carvacrol and 

cinnamaldehyde[24]. The properties and applications of the films are presented in Table 1. 

 

 

Table 1. Mechanical properties and applications of cellulose-based bioplastics 

Types of cellulose properties Packaging applications Ref. 

Carboxymethyl cellulose 

(CMC)/Chinese chives 

root extract (CRE) 

Higher oil resistance properties, improved 

physical and barrier properties, antioxidant and 

antimicrobial activity against both Gram-

positive (B. cereus and S. aureus) and Gram-

negative (E. coli and S. typhimurium) 

Active packaging for sunflower oil [25] 

A 2,2,6,6-tetramethyl 

piperidine-1- oxy radical 

(TEMPO)-oxidized 

Flexible and highly transparent, higher YM1 

(about 10 GPa) and lower elongation (about 

5.1%) than those of the TOCN-COONa, lower 

Biodegradable packaging [26] 
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cellulose nanofibrils with 

free carboxyl groups 

(TOCN-COOH) prepared 

from the softwood 

celluloses 

oxygen permeability (0.049mL μmm−2 

day−1kPa−1) than poly (ethylene terephthalate) 

films. 

2,3-dialdehyde 

cellulose/nicin 

Improved mechanical property, lower water 

holding capacity, WVP2, and oxygen 

permeability, Excellent antimicrobial activity 

against S. aureus and E. coli. 

Antimicrobial packaging for fresh 

pork meat at 4°C. 

[27] 

TEMPO-oxidized 

cellulose nanofibers 

(TOCN) prepared from 

the softwood and 

hardwood celluloses 

Higher TS (about 200%) and YM (about 100%) 

than cellophane film. PLA film surface-coated 

with TOCN showed reduced oxygen 

permeability. 

High-tech food and Medicinal 

packaging material 

[28] 

Hydroxyethyl cellulose, 

carboxymethyl chitosan 

and zinc oxide NPs 

Exhibited lower water solubility and improved 

elasticity, thermal stability, UV shielding ability, 

antibacterial ability against Listeria 

monocytogenes and Pseudomonas aeruginosa, 

and improved crystallinity. 

Composite film for food packaging [29] 

Chitosan/bacterial 

cellulose composite with 

curcumin 

Excellent barrier properties, hydrophobicity, 

mechanical, and antioxidant properties. 

Biodegradable food packaging for 

strawberry and edible oil. 

[30] 

Cellulose acetate films 

with geranyl acetate 

(0.5% v/v and 1.0% v/v) 

Antimicrobial activity against bacteria, 

Staphylococcus aureus and Escherichia coli and 

against fungi Aspergillus flavus. 

Food packaging  

1) Young’s modulus – YM; 2) Water Vapour Permeability-WVP  

 

2.1.2 Environmental impact and biodegradability 

 

Cellulose is derived from plants, making it a renewable source. Unlike fossil-based plastics. Therefore 

cellulose-based plastic does not deplete non-renewable resources[12]. Bioplastic generally has a lower 

carbon footprint than fossil-based plastics, because the use of renewable resources[7]. And also, cellulose 

base bioplastics are free from toxic additives and plasticizers. Therefore, it safer both human health and the 

environment[31]. 

 

In controlled conditions, cellulose-based bioplastics can biodegrade within a few weeks to months[32]. 

Biodegradation of cellulose-based bioplastics takes place mainly through the action of microbial which 

includes bacteria, fungi and other microbes that secrete enzymes that break down cellulose into water, 

carbon dioxide biomasses[32], [33]. This phase needs to take place under conditions such as the right 

temperature, correct moisture levels, or right microbial activity in the substrates[33]. The optimal 

conditions are regulated by industrial composting facilities to ensure that biodegradation takes place at a 

fast pace but not past the required time. However, in natural conditions of their existence, for example, in 

loamy ground or in sea conditions their maintenance can be different considerably, and, therefore, 

degradation processes occur at different rates and, as a rule, slower. Hence, even though cellulose-based 

bioplastics yield several benefits of the environment in which they are discarded controls their 

biodegradation effectiveness[34]. 
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2.2 Starch  

 

Starch is one of the least expensive biomaterials. Cereals and legumes, such as wheat, rice, barley, oat, 

corn, beans, and soy, are also significant sources[35]. It is also abundant, biodegradable, and renewable, 

and its possibility of blending with conventional polymers has garnered wide interest in the bioplastic 

market[36]. Starch-based bioplastics are mixtures of amylose/amylopectin ratios[36], depending on their 

botanic origin Starch may have many weaknesses, and plasticizers help maintain their chemical and 

physical robustness. Since bioplastic's biodegradability is faster than petroleum-based plastics, their life 

long has been questioned many times. They can be an excellent choice for degradation, but wearing them 

for a long time is not recommended[37]. 

 

The general chemical formula for starch (representing both amylose and amylopectin) is (C6H10O5)n , 

where 'n' is the number of repeating glucose units (Fig. 03). The ratio of amylose to amylopectin varies 

depending on the source of the starch, affecting its physical and chemical properties.  

 

 
Fig. 03: Chemical structure of starch [38] 

 

2.2.1 functional properties 

 

The fundamental starch structure is amorphous, consisting of amylose and an inter-crystalline zone of 

dense cross-branched amylopectin. Such morphology is responsible for the thermal, plasticization, and 

rheological properties of the starch[39]. In native starch, amylopectin chain length and chain ramification 

determine the granule crystallinity[39]. Starch components along with lipids (amylopectin, amylose) are 

radially oriented towards the surface of starch. The native structure of starch is not suitable for industrial 

applications, because of its brittle nature and poor mechanical and rheological properties[13], [40]. 

Plasticizers are substrates with low molecular weight which when introduced into the starch matrices, can 

enhance the flexibility and processability of polymeric compounds by decreasing the hydrogen bonding of 

the starch-starch molecules[41]. Plasticizers on the other hand can influence the physical properties of the 

processed starch by controlling its collapsing rate and depolymerization[39]. The properties and 

applications of the films are presented in Table 2. 

Table 2. Mechanical properties and applications of starch-based bioplastics 

Types of starch properties Packaging application Ref 

Starch/PBS Excellent elongation at brake, Outstanding bending 

capability  

Food wrap and food containers, 

grocery bags 

[42] 
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(flexural modulus 378.69- 3188.48 MPa), good 

tensile properties (tensile strength 11.32 - 18.13 

MPa, Young's/tensile modulus 534.77- 2655.27 

MPa) 

thermoplastic starch 

(TPS) 

Adding starch at 15% yielded good mechanical 

properties, (ultimate Tensile strength = 12.1 MPa, 

Elongation @brake % = 250%), starch decreased the 

gloss%  

Food packaging [43] 

Thermoplastic 

PVA/starch blend 

(TPPS) 

glycerol and urea as a complex plasticizer for TPPS 

increased Tensile strength (7.83 MPa) and 

Elongation @brake (203%). 

Biodegradable polymer to replace 

starch polymers. 

[44] 

Cassava 

starch/glycerol/clay 

nanoparticles (NPs) 

lower glycerol content presented better tensile and 

barrier properties, and clay NPs diminished the film 

permeability 

Biodegradable and cheaper food 

packaging 

[45] 

Starch/clay 

(montmorillonite) 

NPs 

Increase of mechanical parameters (stress at peak = 

6-22 MPa and Youngs modulus = 450 -1135 MPa) 

Edible packaging [46] 

Carboxymethyl 

potato starch and 

citric acid (CA) (as a 

crosslinker and 

plasticizer) 

The highest tensile strength (160 kPa), Young 

modulus (650 kPa), and improved thermal stability 

(increased Tg1 58 °C) were reported with CA2 at 30 

wt%. 

Edible packaging [47] 

1) glass transition temperature – Tg; 2) starch and citric acid – CA; 

 

 

2.2.2 Suitability for food packaging 

 

Starch is derived from renewable resources like corn, potatoes, and other crops, making it a sustainable 

option[48]. Starch-based bioplastics are compostable and degrade naturally therefore reducing the 

environmental impact compared to conventional plastics[31]. 

However, starch-based plastics are brittle and therefore hydrophilic, limiting their processing and 

application and leading to problems such as lack of water barrier, and poor mechanism properties[49]. 

Therefore, it cannot be used directly as packaging material[13], [50]. Despite the limitations, starch-based 

bioplastic is the best option for food packaging because of its unique characteristics[51].  

 

 

2.3 protein 

 

Based on the raw materials, the protein bioplastics can be classified in two groups: plant protein 

biopolymers and animal-derived protein biopolymers[52]. Food plant proteins include wheat gluten and 

proteins derived from soy, pea, corn zein, and cotton seed[53], [54]. Sometimes they include whey, casein, 

collagen, gelatin and keratin and others are of animal origin[55], [56]. Since proteins are made from 

different types of amino acids, these strong intermolecular forces of proteins come up with positive 

functional changes in protein-based bioplastics in as far as their performance is better than that of 

carbohydrates and lipids[4], [57]. Despite the fact that they are not very robust, they are thousands of times 

cheaper than synthetic films and possess an extraordinary number of advantages, such as richness in 
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proteins, non-ecotoxicity, biodegradability, and high film-forming ability[55].The bond formed between 

the carboxyl group of one amino acid and the amino group of another (Fig. 04). 

 
Fig. 04: Chemical structure of protein [58] 

 

2.3.1 Characterization of Protein-Based Bioplastics 

 

For any material to be used in an end-product, it has to fulfill certain requirements, depending on the 

intended application. Among these requirements, specific values for the mechanical, thermal and/or optical 

properties may desired and this suggests the onset of the characterization of these aspects through various 

experimental methods. The analytical methods are based on the physical characteristics and for made 

measurements there are use physical quantities of macroscopic parameters analysis can be comparable with 

microscopic or molecular structure of the evaluated materials[59], [60], [61]. The properties and 

applications of the films are presented in Table 3. 

 

Table 3. Mechanical properties and applications of protein-based bioplastics 

Types of proteins properties Packaging application ref 

Canola protein plasticized by glycerol had TS1 between 1.19 to 4.31 

MPa and E of 41.9% to 287.4%, plasticized by 

sorbitol had TS of 1.60 to 3.30 MPa and E2 of 12% 

to 21%, Tg of CPI-based film containing 30% 

glycerol (wt %) -52.7°C. 

 [62], [63], 

[64] 

Soy protein low water resistance, good optical transmittance of 

the SPI film (98.90±0.58%), SPI film showed the 

lowest water solubility (27.37±0.73), SPI film3 TS is 

(4.093±0.531) 

 [65] 

Wheat gluten 

protein 

present good barrier properties for oxygen and 

carbon dioxide, generally not water-soluble, s 

adhesiveness and cohesiveness 

non-food applications, such as 

films, plastics, and adhesives 

[61] 

Corn/ zein Protein better barrier to moisture compared to other proteins 

and a very good barrier to oxygen, tensile strength 

(32–42 MPa) 

standalone films in food 

packaging 

[66], [67] 

Barley proteins 

(hordein) 

200 μm thick; resistant to degradation in a gastric 

juice environment, but broken down completely in 

an intestinal juice environment; low cytotoxicity to 

Caco-2 cells 

Delivery of drugs to the colon [56] 

Keratin transparent materials, with proper UV barrier 

properties, thermal stability from 50 to 200 C, and 

water sensitivity, an additive for synthetic 

Sponges, films [68] 
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elastomers, giving rise to materials with good 

thermal, mechanical, flame resistant, and thermo-

oxidative properties, Tensile strengths of keratin-

based plastics films generally have a lower tensile 

strength value as compared to other biodegradable 

plastics such as starch-based and citric acid cross-

linked plastics film. 

1) Tensile Strength – TS; 2) Modulus – E; 3Soy protein isolate film - SPI film 

 

2.3.2 Environmental impact  

 

Protein-based bioplastics are produced from renewable sources like corn, sugarcane, and other biopolymers 

hence avoiding the many natural resources from the fossil chain[60], [69]. Nonetheless, their production 

and use affect the conversion of lands to production, deforestation, and competition with other crops that 

may influence the population densities and food supply. Further, biopolymer production can also turn out 

costly where the biomass feedstock needs a lot of processing in order to produce the desired material[70]. 

Dramatic increase cost of energy and demand for it can be offset by the improvement of production 

technologies and utilization of renewable energy[14], [71]. Nonetheless, the production of protein-based 

bioplastics creates, in general, fewer greenhouse gas emissions compared to traditional plastics, mainly on 

factors of carbon mitigation in biomass growth[59]. To assess the environmental emissions, it means that 

lifecycle assessments (LCAs) are need since other indirect parameters may include agricultural practices, 

transportation and manufacturing processes[72]. 

 

2.4 Poly (lactic acid) (PLA)   

 

“Cargill Dow’s polylactide (PLA) is a versatile new compostable polymer that is made from 100% 

renewable resources like corn, sugar beets or rice”[73]. PLA is formed from a monomer called lactic acid, 

which has a molecular formula of 2-hydoxypropionic acid, and basically exists in two types, namely L-

lactic acid and D-lactic acid. PLA is a thermoplastic aliphatic polyester made through the polyesterification 

of bio-based feedstocks such as starch and can be assigned a ‘biodegradable’ label due to the presence of 

hydrolyzable linkages in its backbone structure[74]. The PLA advantage relies on its mechanical properties 

that compensate for its flawed versatility by being akin to petroleum-based plastics such as polystyrene 

(PS) and polyethylene terephthalate (PET). Lactic acid is an organic water-soluble acid that is inherent and 

is synthesized by chemical synthesis from petrochemical compounds or through fermentation[75]. Lactic 

acid generation by fermentation is essentially more sustainable compared to chemical synthesis since it can 

be derived from renewable material and uses lesser energy as well as costs less to produce[76]. In the 

global scenario of PLA production, it was approximately 180,000 tons in 2012 and it is projected that PLA 

production should cross a minimum of 800,000 tons per annum by 2020[75]. The plant-derived starch or 

sugar is converted into lactic acid through fermentation. Microorganisms such as Lactobacillus species are 

used to ferment the sugar into lactic acid. Glucose (C6H12O6) is broken down into two molecules of lactic 

acid (C3H6O3). The lactide undergoes ring-opening polymerization in the presence of a catalyst to form 

high molecular weight PLA (Fig. 05). 
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Fig. 05: PLA manufacturing overview [73] 

 

2.4.1 functional properties 

 

The crystallinity of PLA has benefits including improved heat setting, chemical resistance, higher strength 

in fibers/non-wovens, heat resistance and stiffness in cutlery, permeability and chemical resistance in 

films[74][77]. High molecular weight (MW) PLA (Mw > 100,000 D) is generally characterized by high 

mechanical strength with a tensile strength in the region of 50-70 MPa which is comparable to 

nonbiodegradable conventional plastics[78]. And also, high molecular weight Poly (L-lactide) has a 

melting point of 180 ᵒC, while the introduction of meso-lactide depresses the crystalline melting point to 

130 ᵒC[79]. 

 

2.4.2 Applications 

 

PLA has been commercialized in commodity production for short-life cycle compostable products like 

semi-rigid Films, food packaging bags, and containers; most of which are currently in use as 

containers[75]. Originally the market for PLA was confined to food and packaging applications but often 

now it is also used in Electronics, Baseballs, Synthetic fibers, Wrapping films & Tapes, etc. Ingeo™ fibers 

introduced by Cargill Dow in 2003 are the first synthetic fibers that are 100% annually renewable and 
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mainly in application on pillows, mattresses, and or duvet, apparels, floor, wall, and or furniture textiles. 

PLA also finds its uses in the cosmetic products industry and is currently being utilized in 3-D printers[80]. 

 

2.4.3 Environmental impact and biodegradability 

 

According to Cargill Dow in 2003, the PLA production system uses 25-55% less fossil energy than 

petroleum-based polymers[80]. While disposal of PLA products (combustion, composting, etc.) causes 

carbon dioxide release to the atmosphere, it can be considered a low-impact greenhouse gas polymer 

compared to petrochemical-based polymers[80]. This is because the CO2 generated during PLA 

biodegradation is balanced by an equal amount removed from the atmosphere during the growth of the 

plant feedstocks[73]. PLA greenhouse gas emission rate is about 1600 kg CO2 per metric ton, while 

polypropylene (PP), polyethylene terephthalate (PET), and nylon have greenhouse gas values of 1850, 

2740, 4140, and 7150 kg CO2 per metric ton respectively[81]. 

 

In nature, biotic and abiotic factors exist together; therefore, the whole degradation mechanism of a certain 

material can be referred to as environmental degradation[82]. The environmental degradation process of 

PLA is affected by its material properties such as molecular first-order structure (molecular weight, optical 

purity) and higher-order structures (crystallinity, Tg, and Tm), and by environmental factors such as 

humidity, temperature, and catalytic species (pH and the presence of enzymes or microorganisms)[83].  

 

When the molecular weight is low (Mw < 100,000 D), PLA is brittle, cloudy, and opaque, while at higher 

molecular weights, PLA is stronger, more transparent, and less susceptible to degradation[84]. Crystalline 

regions within PLA hydrolyze much more slowly than the amorphous regions as water diffuses more 

readily into the less organized amorphous regions compared to the more ordered crystalline regions, 

causing greater rates of hydrolysis and increased susceptibility to biodegradation[85], [86], [87]. In semi-

crystalline PLA, degradation occurs first in the amorphous regions and more slowly in the crystalline 

regions. Therefore, with time, the proportion of the crystalline regions within the PLA increases and the 

rate of degradation decreases[88], [89].  

 

The rate of PLA degradation is much greater above the glass transition temperature (Tg, 55-62°C) as 

polymer chains become more flexible and water absorption increases, accelerating both hydrolysis and 

microbial attachment[90], [91]. 

3.Regulatory and Safety Considerations 

The use of bioplastic materials for food packaging therefore, strict legal and safety measures are taken to 

check on the outcomes on the health of the consumers and the environmental impacts. Different countries 

and self-governing authorities like the USA’s FDA and the EFSA of the European Union have laid down 

code of practices and norms for the interaction of bioplastics with food products or articles intended for 

food contact. The following are aspects that these regulations cover, material safety, migration limits and 

food safety standards. 

 

3.1 FDA (U.S. Food and Drug Administration) 
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In the United States, the FDA monitors the materials interacting with food through Title 21 of CFR on 

Food and Drugs. Firstly, with the usage of bioplastics for food packaging requires that bioplastics must also 

adhere to the FDA food contact substances that requires that bioplastics should undergo a series of tests to 

ensure they do not leach into the food[92]. 

 

3.2 EFSA (European Food Safety Authority) 

 

In Europe, the EFSA assesses the safety of food contact materials The European Food Safety Authority is 

responsible for assessing the safety of the Food Contact Material under EU no. 10/2011 on Plastic Material 

and article intended to come into contact with food substances. This regulation provides a definition to set 

up maximum levels of migration to food substances from the bioplastic to avoid harm to the consumer[93]. 

 

3.3 Other International Frameworks 

 

Different other countries have their respective standard and regulatory authorities like Health Canada and 

from China's National Food Safety Standards (GB standards), and the Food Sanitation Law of Japan. All of 

these frameworks ensure food safety compliance for bioplastics meant for food contact purposes[94], [95]. 

 

3.4 Biodegradability and Compostability Standards 

 

Currently, specification about labeling bioplastics as compostable includes ASTM D6400, which is 

available in the USA, and EN 13432 which is from Europe. These standards make sure that when the 

bioplastics are disposed, they will biodegrade under Industrial composting conditions and do not have a 

negative impact when discarded into the environment[96]. 

 

4.GLOBAL TRENDS AND ANALYSIS FOR THE INTERNATIONAL BIOPLASTIC 

PACKAGING MARKET 

In the year 2020, the market was affected due to COVID-19 arising from the outbreak affecting nations 

worldwide, which led to the implementation of nationwide lockdowns that disrupted manufacturing 

processes and supply chain and production halts. However, the conditions began improving in 2021 to 

again make the market grow during the forecast period. 

4.1 Current market dynamics 

The global bioplastic market in 2023 was valued at 11.33 billion[97]. There are several reasons for that, 

such as including increasing environmental awareness, stringent government regulations aimed at reducing 

plastic pollution, and advancements in bioplastic technologies[97]. Therefore, with projection estimating a 

substantial increase to around US $ 15.30 billion by the end of 2024[98]. 

 

4.2 Future forecast 
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The global biodegradable bioplastic market in 2021 was valued at US $ 7.7 billion. The market is further 

estimated to grow at (CAGR) of 16.4% in the forecast period of 2021-2030 to reach a value of around US $ 

23.3 billion by 2030 (Fig. 06)[99]. 

 
Fig. 06: Estimated global market size of biodegradable plastics in the forecast period of 2021-2030 [99] 

 

Sustainability focus, food and beverage sector demand, technological advancement, and regulatory 

initiatives are the main factors in the growth of the global bioplastic market. As an example, Bioplastics are 

mainly used in food and beverage sector for food packaging application[99]. Bottles and food containers 

made out from bioplastics. Bottles made of PLA plastic are strong, single-use, and have qualities like gloss 

and transparency. And also, PLA based bioplastics do not release hazardous fumes when it is burned like 

petroleum-based plastics. Therefore, it is anticipated that throughout the forecast period, the demand for the 

bioplastics industry trends will continue to be very high[100]. 

5.FUTURE TRENDS 

Investors in Sea6 Energy Pvt. Ltd. include Aqua-Spark, a Dutch investment firm, and BASF Venture 

Capital GmbH, the corporate venture business of BASF SE, Germany. In terms of growing and preparing 

tropical red seaweed, Sea6 Energy is a pioneer. Additionally, Red Seaweed-based biofuels and bioplastics 

are being developed by Sea6 Energy[101]. 

MAGNUM BIO ABS was introduced by Trinseo for use in automotive settings. With the introduction of 

MAGNUM BIO ABS, the business is able to provide a wider range of sustainably-advantaged products and 

services to its clientele, assisting them in realising their sustainability objectives[101]. 

ABB technology to automate NatureWorks' new bioplastics plant in Thailand, helping to meet the 

increasing global demand for sustainable materials. The new site is set to produce 75,000 tons of Ingeo 

PLA biopolymer per year - an integrated process from fermentation to polymerization enhances supply 

chain reliability. ABB technology will help improve the energy and production efficiency of bioplastic 

manufacturing, expected to grow over 260% by 2026[101]. 
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6. CONCLUSION 

Bio-based plastics are well favored to replace the ordinary plastics used in the food packaging industry 

owing to their biodegradability hence a reduced shelf life of 500 years thus addressing environmental 

concerns. Still, there are challenges that mean that mechanical strength cannot be effectively controlled, 

barriers may be irregular, and biodegradability might be inconsistent, which must be solved with better 

material science. Another disadvantage is the relatively high production cost of bioplastics and the issues in 

conformity to the FDA regulations required for food packaging application. It is important for most 

consumers and can be improved on through education and clear labeling. However, with further research, 

advocacy, and policy support, and an enhanced consumer campaign, bioplastics are set to assume a critical 

role in shaping a greener and environmentally friendly food packaging system. 
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